欢迎访问昆明冶金高等专科学校学报官方网站,今天是 分享到:

昆明冶金高等专科学校学报 ›› 2025, Vol. 41 ›› Issue (3): 108-.DOI: 10.3969/j.issn.1009-0479.2025.03.017

• 电子信息技术 • 上一篇    下一篇

基于低维表示伸缩的图正则化判别非负矩阵分解方法在聚类中的应用#br#

马丽娟,沈栩竹   

  1. (昆明冶金高等专科学校通识与素质教育学院,云南昆明650033)
  • 收稿日期:2024-07-27 出版日期:2025-06-07 发布日期:2025-09-24
  • 作者简介:作者简介:马丽娟 (1979-),女,云南丽江人,讲师,理学硕士,主要从事高职数学教育与应用数学研究。
  • 基金资助:
    云南省教育厅科学研究基金项目 “常态化疫情防控下融合通识类课程成绩的高职大学生心理健康异常检测模
    型研究”(2023J1550)。

Application of Graph Regularized Discriminant Non-negative Matrix Factorization Method Based on Dimensionality Representation Scaling in Clustering

MA Lijuan, SHEN Xuzhu   

  1. ( Faculty of General and Quality Education, Kunming Metallurgy College, Kunming 650033, China)
  • Received:2024-07-27 Online:2025-06-07 Published:2025-09-24

摘要: 数据标签部分已知的情况下,非负矩阵分解方法已经被扩展为半监督学习方式,并提高了数据新表示的判别性,使得其聚类性能得到了提升。提出了一种基于低维表示伸缩的图正则化判别非负矩阵分解方法,其核心思想是把已知标签数据的低维表示进行伸缩后与编码其类别的向量对齐。构造了该方法的数学模型,提供了求解该模型的迭代更新算法,并对该算法进行了收敛性分析。在3个真实数据集上执行聚类实验,并与其他优秀的方法进行比较,结果验证了该方法是可行高效的。

关键词: 半监督学习, 聚类, 非负矩阵分解, 判别约束

Abstract: When some data labels are known, the non-negative matrix factorization ( NMF ) method canbe extended to a semi-supervised learning apprach , which enhances the discriminative power of the newdata representation and improves clustering perfommance. In this paper, we propose a graph regularizeddiscriminative non-negative matrix factorization method based on low-dimensional representation scaling(SGDNMF'). The core idea is to scale the low-dimensional representations of labeled data points and align them with the vectors encoding their labels. We formulate the mathematical model for this method.provide an iterative updating algorithm for solving the model, and analyze the convergence of the algo.rithm. We conduet clustering experiments on three real-world datasets and compare it with other state-of.the-art methods. The experimental results demonstrate the feasibility and efficieney of our method.

Key words: semi-supervised learning, clustering, non-negative matrix factorization, diseriminative con-straints

中图分类号: