欢迎访问昆明冶金高等专科学校学报官方网站,今天是 分享到:

昆明冶金高等专科学校学报 ›› 2025, Vol. 41 ›› Issue (3): 62-.DOI: 10.3969/j.issn.1009-0479.2025.03.010

• 环境保护与化工技术 • 上一篇    下一篇

改进双通道 PCNN与 NSCT的图像融合

  

  1. 1昆明冶金高等专科学校电气与机械学院,云南 昆明 650033;2曲靖市第二人民医院医学装备管理部,云南 曲靖 65500
  • 收稿日期:2024-05-26 出版日期:2025-06-07 发布日期:2025-09-23
  • 作者简介:杨 青 (1986-),女,湖南邵阳人,讲师,工学硕士,主要从事基于神经网络的图像处理研究。
  • 基金资助:
    云南省教育厅科学研究基金 “面向电力设备故障检测的图像融合与增强研究”(2025J1396);“基于 PCNN与 多尺度变换的图像融合方法研究”(2024J1362)。

Image Fusion Based on an lmproved Dual-Channel PCNN and NSCT

  1. 1. Faculty of Eleetrieal and Mechanieal Engineering, Kunming Metallurgy College, Kunming 650033, China;2. Medical Equipment Management Department, Qujing Second People's Hospital, Qujing 655000, Yunnan, China
  • Received:2024-05-26 Online:2025-06-07 Published:2025-09-23

摘要: 针对脉冲耦合神经网络有众多参数需要人工设置及每次只能处理一张图片的问题,提出一种改进的双 通道脉冲耦合神经网络用于图像融合。改进的双通道模型引入了高斯滤波机制,将周围神经元以高斯分布形式 结合起来,使得模型不需要再考虑参数突触权重及链接放大系数,并且利用分形维数来估计其余的所有参数, 完全实现了参数的自适应化。因为是双通道模型,也具备了同时处理两幅图像的能力。两幅多源图像先通过非 下采样轮廓波进行多尺度分解,得到高频子带图像与低频子带图像。高频子带图像利用新提出的改进的双通道 脉冲耦合神经网络进行融合,低频子带图像通过基于能量属性的方法进行融合,最后经过非下采样轮廓波逆变 换得到融合图像。多组实验表明,所提方法在视觉质量和客观评价方面都有一定的优越性。

关键词: 图像融合, 非下采样轮廓波, 改进的双通道脉冲耦合神经网络

Abstract: An improved dual-channel pulse coupled neural network ( PCNN) is proposed for image fusionto address the challenges of manually setting numerous parameters and processing only one image at a timein traditional PCNN. The enhanced dual-channel model introduces a Gaussian filtering mechanism thatcombines surrounding neurons in a Gaussian distribution , eliminating the need for manually setting synapticweights and link amplification coefficients. Additionally, fractal dimension is used to estimate all other pa-rameters , fully achieving parameter adaptation. As a dual-channel model, it is capable of processing twoimages simultaneously. Two multi-source images are first decomposed into multi-scale representations usingthe non-subsampled contourlet transfom( NSCT ), yielding high-frequeney and low-frequeney sub-bandimages. The high-frequeney sub-bands are fused using the newly proposed improved dual-channel PCNNwhile the low-frequency sub-bands are fiused using an energy-based method. Finally, the fused low-fre.quency and high-frequeney sub-bands are inverse-transformed using NSCT to obtain the final fused image.Experimental results demonstrate that the proposed method offers significant advantages in terms of both vis.ual quality and objective evaluation metrics.

Key words: image fusion, non-subsampled contouret transform, improved dual-channel pulse coupled
neural network