欢迎访问昆明冶金高等专科学校学报官方网站,今天是 分享到:

昆明冶金高等专科学校学报 ›› 2022, Vol. 38 ›› Issue (6): 77-.DOI: 10.3969/j.issn.1009-0479.2022.06.014

• 电子信息技术 • 上一篇    下一篇

一种改进的不完备信息系统分类器

杨景1,宋 丽2   

  1. (1.昆明冶金高等专科学校电气与机械学院,云南 昆明 650033;2.中国移动通信集团云南有限公司玉溪分公司,云南 玉溪 653100)
  • 收稿日期:2022-06-08 出版日期:2022-12-14 发布日期:2023-11-27
  • 作者简介:杨景 (1988-),男,安徽潜山人,网络工程师,理学硕士,主要从事数据挖掘研究。

An Improved Bayesian Classifier for Incomplete Information Systems

YANG Jing1,SONG Li2   

  1. (1. Faculty of Electrical and Mechanical Engineering, Kunming Metallurgy College, Kunming 650033, China;2. China Mobile Communications Group Yunnan Co. , Ltd. , Yuxi Branch, Yuxi 653100, Yunnan, China)
  • Received:2022-06-08 Online:2022-12-14 Published:2023-11-27

摘要: 分类是数据挖掘的一个重要功能,贝叶斯算法是众多分类算法中一个经典算法,具有极高的准确率。然而,贝叶斯算法要处理的数据必须具备完备的信息系统。为建立不完备信息系统的分类模型,改进了已有的针对不完备信息系统的 DBCI分类器,构造了IBCI分类器。该分类器不需要事前对数据进行补齐操作,可避免因数据补齐导致的分类模型准确率较低问题。理论和试验均证明该分类器比改进前的 DBCI 分类器具有更高精度,拓展了贝叶斯算法的适用范围。

关键词: 数据挖掘, 分类, 不完备信息系统, 贝叶斯算法

Abstract:

Classification is an important data mining function. Featuring high accuracy, Bayesian algo-rithm is one of the classical classification algorithms. However, Bayesian algorithm requires that the datato be processed is a complete information system, and the algorithm cannot be directly applied to incom-plete information systems. In order to establish a classification model for incomplete information systems.this paper improves the DBCI classifier and constructs the lBCI classifier, which does not need to supple-ment the data in advance. The classifier avoids the low accuracy of classification model caused by datacomplement. Both the theory and the experimental results prove that the classifier has higher accuracythan the DBCI classifier, and extends the application scope of Bayesian algorithm.

Key words: data mining, classification, incomplete information systems, Bayesian algorithm